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Master-slave synchronization in chaotic discrete-time oscillators
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In this paper, we study a simple discrete-time neural oscillator model that, in certain parameter regimes,
exhibits periodic or chaotic dynamics. The present model with intrinsically chaotic dynamics is capable of
spatiotemporal information processing: in response to constant external stimulation, the oscillator can switch
into different chaotic states restricted to distinct parts of the phase space. Of particular interest is the processing
of time-dependent input in a master-slave configuration of two coupled oscillators. Here, the response of an
oscillator is studied by driving it with the signal of the other. Following the input, the response system adapts
to the state of the drive. For a chaotic drive, we can observe generalized synchronization. The onset of
adaptation to the drive state by the response is accompanied by on-off intermittency resulting in irregular
bursting behavior.
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[. INTRODUCTION functional role of coherent activity in the brain. Synchrony
generation by networks of interconnected neurons has been
Chaotic dynamics is a frequent phenomenon even ihe subject of many theoretical and numerical studigs
simple neural network models, but it has been thought of aSynchronization can manifest itself in different ways. The
being of no direct computational relevance. Computatiorcommon meaning of synchronization is the coincidence of
with chaotic neural networks attracted much interest after th€vents or motions with respect to time. As a basic phenom-
observation that chaotic dynamics may be directly involvedenon in physics and biology, synchronization refers to the
in the neurocomputational activities of the brgii. There  Simultaneous occurrence of entrainméht frequency lock-
are several approaches concerning computation with chaotifg) and phase locking in weakly coupled oscillator en-
neural networks. Such networks may allow us to realize assembles. Following widespread study of chaotic oscillators,
sociative memories with enormous storage capacity, since dfie notion of synchronization has been generalized to these
infinite number of unstable periodic orbitsPO9 is embed- ~ Systems[7,8]. Coupled identical deterministic chaotic sys-
ded in a chaotic attractor, each of which can be stabilizedems can synchronize perfectly: once the coupling exceeds a
using chaos control techniqug¢g]. Chaotic dynamics can critical value, both systems move along identical orbits. A
also be used during the network’s learning cycle to prevenfethod to study synchronization in chaotic systems was pro-
the network from becoming captured in undesired localPosed by Pecora and Carrpfl]. They split a chaotic system
minima[3]. Furthermore, chaotic neural networks can learninto two subsystems, a drive and a response system. They
correlations between time series, which can be applied téind that drive and response will typically synchronize only if
prediction and modeling of sequence generafinin addi-  the maximal Lyapunov exponent of the response subsystem
tion, neural networks with chaotic attractors are expected tés negative. In general, such a situation can be studied by
allow a more biologically realistic approach to perform com-equations of the form
putational tasks: such systems encode and classify stimuli by

altering their dynamics rather than by converging to a static u(t)=F(u(t),v(1)),
pattern. _ 1)
To illustrate this, one may consider the well-known Lo- v(t)=G(v(t)).

renz attractor. Recognition of an input pattern may stabilize

the network dynamics onto individual parts of the attractor,Since the coupling is active only in one direction, such a

e.g., onto one of the two wings of the Lorenz attractor. Theresystem is referred to as a master-slave system with dlave

is ample evidence for the validity of this suggestion fromand masteV and with state variables={u, ... ,u,} and

several experimental studies as well as mathematical models={v 4, . .. ,v4}.

of the olfactory buld5]. It is believed that in the absence of  If the coupled systems are not identical, in general they

signals from olfactory receptors, the activity of the olfactory cannot move along identical orbits. But if they are both cha-

bulb is chaotic and of low amplitude. Signals from the re-otic and noise-free, a measurable interdependency can still

ceptors reduce the dimension of the attractor, or even makexist, provided the coupling is sufficiently strof@]. This is

the chaotic activity coherent and periodic. referred to as generalized synchronization, which in noniden-

Coupled nonlinear oscillators allow us to investigate thetical chaotic systems of the forrfl) can be obtained if a
relationu(t) =V (v(t)) exists. Identical synchronization re-
quiresW¥ =1, whereas the condition for generalized synchro-
*Corresponding author. Email address: juergen.schwarz@uniization is less restrictive. As suggested by Pyrddas ¥
tuebingen.de can be either a smooth transformation, where the generalized
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mationV, where the generalized synchronization is weak. In
general, it is not possible to constraktexplicitly, and even

if it were, it would not be clear to what extent deviations
from predicted values are due to a lack of synchronization or
to an inexactness oF. When the exact equations of motion
are known, generalized synchronization can be inferred from
the Lyapunov exponents of Eqé&l) or from the identical X y
synchronization of two identical slave systems. New mea-
sures of generalized synchronization suitable for experimen-
tal data have been proposed receftl§].

In biology, both ways of coupling—reciprocal and
master-slave—coexist. As an example, cortex and thalamus u \%
as structures are reciprocally connected, they are not,' how- FIG. 1. Schema of the discrete-time oscillatary) with syn-
ever, on the cellular scale. For example, thalamic input is fed .. . )

. . . S . . aptic weightsw;; and external inputs andu.
into layer IV neurons, but cortico-thalamic projection origi- !

nates in layer VI cortical neurons. Within the cortex, pyra- i i t s E imple di te-ti
midal cells and interneurons are partly reciprocally con-coNtNUOUS-ime counterparts. £ven simple discrete-ime os-

nected, partly not, and form functional compartments within?Illators can prodgce a variety of dynar_mc_al_ behavior rang-
ng from fixed points through quasiperiodicity to chaos. A

the cortex. Other examples of master-slave configurations ar . ) : o
found in the cortico-striatal projection, in the cerebellar cir-9€neral discrete-time neural oscillator model is given by
cuitry, in the hippocampal-lateral-medial septum pathway, or
the entorhinal-nucleus accumbens pathway.

The mechanisms of inducing synchronous firing in groups o . .
of cells are not yet accessible to experimental study, since y = wy Xt wyyy o+ 6)),
too many “parameters” are impossible or at least difficult to
control by means of pharmacological techniques. When exwherex andy are the state variables of a pair of an excitatory
citable systems are subject to an external stimulus, the queand an inhibitory neuron, the;; are the synaptic weights),
tion arises under which conditions they can be entrained. Aure fixed thresholds, andandv are external inputs. A sche-
pair of neurons could be synchronized either via direct synmatic representation of Eq&) is shown in Fig. 1. The out-
aptic connection between them or as a result of a commoput function f is given by a sigmoidal function, such as
input. f(z) =tanh(uz) or the Fermi function

In this work, we study two coupled chaotic discrete-time
neural oscillators based on a model proposed by Waaly
The intrinsic dynamics of these oscillators and their response f(z)= ———.
to constant external stimuli are well understood. However, 1+e 497
an understanding of the dynamic properties of coupled, small

ensembles is also essential, especially in view of larger nefor the intrinsic dynamics of Eq$2), two prominent types
works. A description of the model and its basic properties argy connection weight matrices have been considered:
presented in Sec. Il. In Secs. Il and IV, we present a nu-
a —p
e[t A
B

merical study of the dynamics of a master-slave system and

we show the dependence of the systems behavior on the W(A):(

parameter master-slave coupling strength and constant exter- o

nal input on the drive system. The overall behavior of the

slave system in response to the resulting chaotic drive ishe typeA is widely studied12,14—16. As shown by Wang
analyzed by calculating bifurcation diagrams. The synchrof12] for u=v =0, the choicea=2b produces a period-
nization properties of the master-slave system are determingghypling route to chaos for varying the paramefersr o. In

by explicitly calculating the maximal Lyapunov exponent the chaotic regime, two chaotic attractors may coexist with
assigned to the slave system. Section V gives a summary @fistinct attraction basins. Constant external input can switch
the results and a general discussion of the neurocomputghe dynamics from one attractor to the otfig#,15. This

synchronization is strong, or a howhere continuous transfor- T

X L= (WopX !+ Wy y '+ U+ 6y),

2

()

a -—a
b —b

tional and neurobiological properties of the model. allows us to perform simple computational tasks using cha-
otic attractors. In addition, the systef® can encode infor-
Il. MATHEMATICAL DESCRIPTION mation in the sense of representing stimulus intensity

through changes in system dynamjdd].
The typeB connectivity results in a system with periodic
Most works on neural oscillators focus on continuous-oscillatory dynamicg19]. For a?+ 82>1, a limit cycle at-
time models, such as, for instance, the Wilson-Cowan modetfactor occurs via a secondary Hopf bifurcati@n Neimark-
[13]. Discrete-time models received relatively little attention, Sacker bifurcationand may vanish by means of a saddle-
though their behavior often differs fundamentally from their node or limit-cycle bifurcation.

A. A discrete-time neural oscillator model
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FIG. 2. Chaotic attractors corresponding to tlag “ground,”

(b) “up,” and (c) “down” states of Eq.(4).

B. A neural oscillator with delay
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FIG. 3. Schema of the discrete-time oscillator with delayed
feedback loop. Filled elements indicate inhibitory neurons.

external input is not canceled when the input is turned off,
i.e., the system does not fall back to a defined ground state.
Finally, the chaotic attractors are separated by an unstable
fixed point, which may interfere unfavorably with the net-
work dynamics by capturing the orbit. A modified system

X l=flaxt—ay'+cf(dx™1)+u],
(4)

y'i=f(bx'—by'+v),

was suggested to counter these defects by introducing a time-
delayed feedback on the excitatory neuf@s]. This modi-
fication results in a sigmoidal-shaped chaotic attractor as a
“ground state.” In response to external input, the system
constrains its dynamics onto delimited parts of the attractor
as long as the input is supplied. Excitatory input on newron
confines the output ofx(y) to an attractor in the upper half

of the phase space, whereas inhibitory input results in an
attractor in the lower half of the phase space. In the follow-
ing, we refer to these states as ‘“ground,” “up,” and
“down” states, respectivelycf. Fig. 2.

The introduction of a time-delayed feedback seems bio-
logically unjustified. It is believed that chaos in biological
networks arises from the interaction between different net-
work areas separated by long and/or slowly conducting paths
of signal transmission, effectively acting as a time-delayed
feedback loop. But instead of using E@) with delayed
self-coupling, a network with four neurons can be used to
obtain identical dynamics. The four-neuron network can be
used as a simple logical unit, capable of performing for in-
stance, the XOR function by discriminating excitatory and
inhibitory input [15,16]. The connection scheme for intro-

With respect to performing computational tasks, theducing the delayed feedback loop into the system given in
model (2) has serious shortcomings. First, the system in it€Egs. (2), incorporated as an additional neuron, is shown in
ground state has two distinct attractors. Second, the effect dfig. 3.
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[ll. DYNAMICS OF A DRIVER-RESPONSE SYSTEM cillators. In the following, we study in detail the situation

. . . . when drive and response are in the “ground” state and the
A single neural oscillator effectively acts as a signal trans-

. L . o drive is settled into the “up” state by constant external in-
ducer, turning a nonoscillating input into a chaotic signal. ut
This may allow us to encode the intensity of a sensory inpuP '
in different degrees of complexity in behavior, ranging from
periodic to chaotic dynamics. However, more realistic is a A. Dynamics with u;=0
steady flow of incoming information interacting with ongo-
ing activity in distributed networks. Thus, time-dependent,,
input is more likely to be of relevance. Interactions of two
chaotic neural oscillator®) or (4), respectively, can be stud-
ied in a master-slave configuration with unidirectional cou-

Without external influences, i.e., with=0 ande =0, the
ground” state corresponds to the unperturbed state for both
oscillators. Here, X; ,y;) oscillates irregularly in the upper

pling. Assuming that the inhibitory neurowys are local cir- @)
cuit neurons and only the excitatory neurongan interact, r H l F | W ﬂ F M ﬁ D
this results in the equations 0.8 §
xiH=flax —ayl+cf(dx b +exb+ul+6], - 0.61
t+1 t t (5) 0.41
y1 “=f(bxg—by;+vy), 02 M‘M‘M w AJ mW m
x5H = flax,—ayh+cf(dx, b +ub+ 6], o'h L U It Lu L ﬁ U
(6) 50 100 150 . 200 250 300
V1= (0% by o). t
Here (x1,y;) is the response systefslave and (x,,y,) the ®) 1

drive (maste). The transfer function is given by the Fermi
function (3) with steepnessr=1, so thatf(z) €[0,1]. The
synaptic connection weight matrices for both oscillators are 0.6 8

—

0.8 |

of type A and are identical: x oal |
25 —25 ozl ]
w= . 7
5 -5 @) o 1
Throughout the text, we use the parameter valtes- 1.5 50 100 150, 200 250 300

andd=0.5. The threshold, or bia® was chosen identical
for both excitatory neurons ag8=0.5. Via the bias, it is ©) 1t
possible to control the system’s overall activity level, which

may be helpful in adjusting the network parameters so as tc 98
comply with the desired stabilization properties. The value of g gl |
#=0.5 has been found suitable to keep the system in a chax™
otic state. The coupling strength between master and slave i 0.4r
given bye. For e=0, the systems are decoupled and each 0.2h
system is chaotic depending on the external inputs, which ar¢
denoted byu; andu,. Effectively, constant external input . . . . .
and the chaotic drive signal add up to a time-dependent inpu 50 100 150, 200 250 300
on the response system.

It is assumed that stimulus reception in biological sys- 4
tems, at onset and offset of input activity, respectively, sta-
bilizes the system transiently onto a new attractor. One may 0.8
also consider memory formation and retrieval as attractor
stabilization (through neuromodulatory substances that en- .~
hance those couplings related to the attrgctatso, pattern 0.4r ]
recognition may be realized as a matching operation: the
stored attractor is, loosely speaking, congruent with the
present attractor induced by sensory input. Thus, of particu- or , . , ‘ , |
lar interest for our study is the behavior when drive and 50 100 150 200 250 300
response system are in different initial attractor states ana t
external input is applied. There are 18 different state configu- FiG. 4. Signal of neuronx, in the “ground,” “up,” and
rations for the master-slave pairdf#0, determined by the “down” states and in the intermittent regime while adapting the
sign of the coupling coefficiert and the states of both os- “up” state.

0.6 1

011108-4
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FIG. 5. Bifurcation diagrams of the output of neunon(a) with FIG. 6. Bifurcation diagram of the output of neuron as a
external inputi,= 1 onx, as a function of coupling strength (p)  function of coupling strengtte for external input strengtia) u,
With coupling strengtte=1 as a function of external input,. =0.35 and(b) u,=0.45.

and lower halves of the phase space forming an S-shaped
attractor. The effects of increasing the coupling strength
can be observed in the output signal of neuxericf. Fig. 4),

in the bifurcation diagrams in Figs. 5 and 6 where the state oi
the excitatory response neurgn is plotted as a function of

Thus, the response system is sensitive to the spatial loca-
tion of the drive in phase space. The dynamics of the re-
ponse restricted to the new spatial location can be either
haotic or periodic, depending on the drive strength and in-
. ) . . dependent of the nature of the drive signal. Close to the
% and in the phase portrait of the response oscilltbrFig. critical coupling for synchronization, we can observe re-
: . . . ., gimes with partial synchronization: the dynamics of the re-
When both_d_nve and response are in the “ground State*sponse follows the drive for short periods interrupted in ir-
the chaotic driving results in an enlargement of the attractoFegular intervals by sudden jumps to the complementary
atnd athchaztlclrgsponsek over ta Itarg(i ranlgg Oft (Eout%“ngttractor, resulting in a complex burstinglike behavior.
Zr_eng SIt PP 3{;”9 wea tcons inhe;(hern;_ lnp? 0 the To estimate the parameter regions, bifurcation diagrams
“r|ve Zys etmt a (:Wsth US“ O,, Swi C q ? t”}['e rom e ere evaluated using andu, as bifurcation parameters. To
ground” staté into theé “up™ or ‘down~ Slaté, respec- - ;¢ end, one of the parameterandu, was kept ak =1 or

e e A . tespectvely. Wi e olhr paraeer ves vare i
P 9 eneral, chaotic behavior of the systdd) in response to

zﬁPfiSceiér?[lljt (\;\I/gszz; ntdh;h:;:zg (;‘etvr\\/,e rﬁ;&gﬁﬁ?ggﬁ; ngpeac nstant external input is observed in a small parameter
y range betweenu,~0.3 andu,~0.6. For larger values of

the old one. input strength, we note that the single oscillator typically is
not chaotic but oscillates periodically. Thus, we expect that
chaotic behavior of the response in the “up” state can be
Turning on the external input,, we can observe that the found in a corresponding parameter regime £orFirst we
response system adapts to the attractor of the drive systemfiked ¢ and obtained the output of neurgp as a function of
the coupling strength exceeds a critical value and the couexternal inputu, on neuronx,. We start a detailed analysis
pling coefficient and the input have equal signs. Eor0  with £=0.3. For this coupling strength, the response system
and a negative input, to the drive, the “down” state for switches to the “up” state if the external input strength ex-
the drive, the response does not adapt to the attractor of theedsu,=0.89. A periodic window can be observed for
driving system. In contrast, a negative sign for the couplingl.064<u,<1.243. For larger values, the output of neurgn
strengthe and positive input on the drive results in an adap-is again in the chaotic “up” state. Far= 0.4, the response
tation of the response to the complementary attractor, theystem jumps to the “up” state iti,>0.39 and remains
“down” state. chaotic also for larger values of input strength Further

B. Dynamics with u;#0

011108-5
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increasinge again yields a critical value ofi,~0.39 for  attractor may exhibit riddled basins, so that a prediction of
adjusting to the “up” state, while chaotic behavior is now the synchronized state is almost impossible by just knowing
observed in a smaller region ab. initial conditions[18].

For fixed external inputi, and varied coupling strength Synchronization of chaotic systems and the stability of the
the bifurcation diagrams show qualitatively similar behavior.synchronized state can be determined by the spectrum of the
For u,=0.35, periodic windows can be observed fer Lyapunov exponents. One obtains synchronization only if
~0.2 ande ~0.4. The intermittent regime then follows, and the maximal Lyapunov exponent of the response subsystem
at e~0.48 the response is completely settled into the “up”is negative. For the system in Eqg$l) one hasd+r
state. This chaotic regime is interrupted by a small periodid-yapunov exponents. Of thesd, exponents coincide with
window ate~0.51. Ate~0.538, the chaotic attractor disap- those of the drive and are denoted X, i=1,... d. The
pears via a reverse sequence of period doublingse At otherr exponents)\l(u), i=1,...r, are aSS|gned to the re-
~0.6 andu,=0.35, a new chaotic attractor appears in thesponse and are called conditional Lyapunov exponents.
“up” state region via a crisis as can be seen in Fi(p)6 Ranking the Lyapunov exponents by magnitudg>\,>

Increasing external input strength yields similar behav- ...) one obtains generalized synchronization)\ﬁu)<0.
ior, but shifts the parameter regions towards larger valuesthe attractor dimension of the combined systentV can
The behavior folu,=0.45 is shown in Fig. @). be estimated with the Kaplan-Yorke formula

IV. GENERALIZED SYNCHRONIZATION Aj
Dy+v=l+2 o ®

For coupled chaotic systems, intuition about criteria and
conditions of synchronization may fail. Previous studies
showed that there is no sharp synchronization threshold. IriNhere | is defined by the conditions¥j_;\;>0 and
stead, there are multiple thresholds, each associated with &~ 1A;<0. To obtain the Lyapunov exponents, we need the
unstable periodic orbit. Near each synchronization threshol!jﬂearlzeOI equations. Therefore, we rewrite the time-delayed
there can be intermittent burstirigttractor bubblingof the — system(4) as an equivalent three-dimensional system,
system out of the synchronous state when there is a small t+l
amount of noise or parameter mismatch pregaii. The =f(ax—ayi+cz+uy,

011108-6
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a) 1 - - - - but remains positive. For a larger coupling strengththe
maximal conditional Lyapunov exponent becomes negative,
indicating generalized synchronization. For parameter values
where the new chaotic attractor appears at0.6, the
Lyapunov exponent becomes positive again. An inspection
of the regions of a negative maximal Lyapunov exponent
shows different behavior depending on the dynamics of the
drive system. For a periodic drive, the response may also
become periodic. For values of, yielding a chaotic drive
signal, we can observe chaotic dynamics of the response on a
much smaller scale, in the form of small-amplitude fluctua-
tions (presumably due to the response operating near the
saturation of the Fermi output functipnlt seems that the
dynamical behavior of the response system is completely
determined by the drive. To investigate this in more detalil,
we consider two identical reponse systems, differing only in
their initial amplitudes, and driven by a common drive sys-
tem. In the parameter regime where the original chaotic
attractor disappears via a sequence of reverse period
doublings, we can observe a time shift or a delayed synchro-
nization between both response systems. Near the bifurcation
points, the delay can be decreased. This behavior seems
plausible since in this parameter regime the chaotic dynam-
ics of the response can only be observed as small-amplitude
fluctuations. Between bifurcation points, the perturbations by
the chaotic drive are not sufficient to synchronize the “peri-
odic” orbits of the response systems.

The most interesting behavior is found in parameter re-
gimes where the maximal conditional Lyapunov exponent
crosses\{¥=0, or remains close to zero. In Fig. 8, we can
observe that the periodic windows in Fig. 6 coincide with the
. . . . main minima of the maximal Lyapunov exponent. For ex-

0 0.2 04 . 06 0.8 1 ample, for external inputi,=0.35 there is a region 0.35
<e<0.64 of the master-slave coupling where the Lyapunov
FIG. 8. Maximal Lyapunov exponent for the joint driver- exponent changes its sign several times.eAt0.35 ande

response system with fixed external ingak u,=0.35 and(b) u, =0.37, the response system is oscillating periodically in the
=0.45 as a function of master-slave coupling strength “up” state or the “ground” state, respectively. For 0.46
<e<0.54, the response system is in the chaotic “up” state.
yiIri=f(bx—byl+uv;), At £=0.36, £=0.43, ande=0.45, the response is in the
(9) intermittent regime where the synchronization is interrupted
2t =f(dx), by sudden excursions off the “up” state.

to construct the master-slave system in analogy to Egs.
and (6). For this system, the Jacobian matrix can be easily
determined. The spectrum of the Lyapunov exponents for the Chaotic systems are characterized by their sensitive de-
single system(9) was calculated ak;,~0.502,\,~—2.43,  pendence on initial conditions. Small perturbations of the
and A3~—8.17 for the “ground” state ¢;=0) and\;  chaotic system can cause large and swift responses. This
~0.427,\,~—4.334, and\3~ —7.145 for the “up” state  greatly improves the flexibility of a system to be used in
with constant external input;=0.3. In Fig. 8, we show the various applications. Coupled chaotic maps have been pro-
maximal conditional Lyapunov exponent of the master-slaveposed as a basis of high-tech sensors or secure communica-
system as a function of the coupling strengtiand different  tion deviceq20]. In addition, it was shown that weakly con-
input parameters,. The qualitative dependence on the cou-nected mappings with chaotic dynamics have neuro-
pling strengthe reproduces the behavior of the oscillator ascomputational propertig21].
observed in the bifurcation diagrams in Fig. 6. The dimen- A single system(9) is capable of spatiotemporal informa-
sion for the joint system was calculated Bg.,=2.03 for  tion processing. External, chaotic input from an identical
u,=0.35 ate=0 and asD=1.3474 ate=0.49, where the system induces a variety of dynamic behaviors in response to
response adapts to the “up” state. the chaotic drive. Possibly the response system adjusts its
In the parameter regimes where the response adapts to th&ate to the state of the driving oscillator. Our results show
state of the drive, the maximal Lyapunov exponent decreasdbat the response system is more sensitive to the spatial lo-

V. DISCUSSION
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cation(corresponding to the “up” or “down” states, respec- ) - - - - -

tively) of an external driving than to the nature of the input ! W M

(constant, periodic, or chaojicThus the master-slave system 08 W Fw WWWWW

(9) may provide an example of a chaotic system that can

generate spatiotemporal correlations by adapting to a state ¢ - 06 )

the drive, accompanied by either synchronization or tempo- 04

rally uncorrelated activity. The state of the response is a  ,

function of the drive, depending on the restrictions imposed U J U U

by the strength of the master-slave coupling and the strengtl or . . , , ,

of external input to the drive. Varying external input may 50 100 150 200 250 300
yield chaotic as well as periodic activity of the drive. If the !

0.4 |

master-slave coupling exceeds a critical value, the respons At
follows the drive, independent of the nature of the driving ) . . .
signal. The Lyapunov exponents shown in Fig. 8 confirm the 1+
conclusions drawn from the bifurcation diagrams in Figs. 5 H H M N
and 6. If both systems are set into the chaotic “up” state, the %8|
maximal Lyapunov exponent corresponding to the response o |
system first remains positive for intermediate coupling x"
strength and then for larger coupling strength a negative
maximal Lyapunov exponent is observed, i.e., generalizec o2
synchronization. I u L I M

In the parameter regime where the response system adap s s . . .
to the state of the drive, we can also observe intermittent 50 100 10 200 250 300
behavior or partial synchronization. The dynamics of the re-
sponse follows the drive for longer periods. This is inter- FIG. 9. Signal of the responsg; and the drivex, for a
rupted by sudden jumps to the complementary attractor an¢pulsed” input u, on the drive starting at=100 for At=100
results in complex burstinglike behavior. Such behavior hagerations.
been found in several coupled chaotic systems and is referred
to as on-off intermittency17]. This kind of intermittency is cessing in the brain. One firm argument in favor of such an
characterized by short periods of desynchronization interapproach is the coexistence of reciprocal as well as master-
rupting the synchronized activity. The origin of these shortslave coupling in the nervous system along with the finding
events of desynchronization is unstable periodic orbitghat these connections serve functions, e.g., in stimulus rec-
(UPOs of the drive attractor that fail to entrain the corre- ognition, which cannot be explained by ascribing to them
sponding fixed point or periodic orbit of the response systemjust feedback-control such as in a flow-limiting control de-
When driven with one of these UPOs, the response systewice. Nevertheless, there are numerous instances of master-
does not synchronize, but oscillates in a way different fromslave systems in biology that inspired the investigations pre-
the drive. In the joint space of drive and response, theseented here.
UPOs are transversally unstable, i.e., in their vicinity the Networks of coupled units showing regular, periodic dy-
synchronization manifold is repelling, not attracting. When-namics are widely studied in the neurobiological context;
ever an almost synchronized trajectory comes close to anly a few studies on synchronization phenomena focus on
transversally unstable UPOQ, it is repelled from the synchrothe behavior of coupled chaotic subsystef#g]. Coupled
nization manifold and synchronization breaks down for achaotic systems provide the advantage, like real biological
short period of time. networks, that synchronization is sensitive to changes in cou-

There is ample experimental evidence for chaotic behavpling strength. This may enable that transitions from syn-
ior in single neurons and on the network level. The biologi-chronization to desynchronization and vice versa can be
cal relevance of the modéR) with type A connectivity is  modulated by changes in synaptic coupling strength. In our
discussed in detail elsewhdr4]. Of course our moddl) is  system, see Fig. 9, we can observe that, when a pulsed input
also a simplified analogy of a real biological system. Thus, itu, is applied on the drive, the adaptation of the response
has several limitations and there is no guarantee that thgystem to the state of the drive occurs instantaneously. In
behavior of the model is actually relevant for biological sys-contrast, the rate of convergence to the attractors, under ap-
tems. However, studies of complex oscillator ensemblepropriate values of coupling strength, is very slow for regu-
must proceed from simplified and therefore somewhat unrelar, periodic oscillators.
alistic models. We are only beginning to understand the Of particular interest are also the relations between dis-
brain as an ensemble of neuronal oscillators instead of arete and continuous systems. Discrete-time systems also
network of simple inhibitory and excitatory integrate-and- arise in iterations of Poincamer time-T maps of continuous
fire elements. There is good experimental evidence that thibows. When such a mapping has a fixed point, the corre-
precise temporal pattern of neuronal activity is crucial forsponding flow has a limit cycle solution. When, for example,
information processing and that studies of coupled nonlineathe mapping undergoes a saddle-node bifurcation, then there
oscillators will lead the way to understand information pro-is also a bifurcation in the flow: a stable and an unstable limit
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