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Master-slave synchronization in chaotic discrete-time oscillators
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In this paper, we study a simple discrete-time neural oscillator model that, in certain parameter re
exhibits periodic or chaotic dynamics. The present model with intrinsically chaotic dynamics is capa
spatiotemporal information processing: in response to constant external stimulation, the oscillator can
into different chaotic states restricted to distinct parts of the phase space. Of particular interest is the pro
of time-dependent input in a master-slave configuration of two coupled oscillators. Here, the respons
oscillator is studied by driving it with the signal of the other. Following the input, the response system a
to the state of the drive. For a chaotic drive, we can observe generalized synchronization. The o
adaptation to the drive state by the response is accompanied by on-off intermittency resulting in irr
bursting behavior.
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I. INTRODUCTION

Chaotic dynamics is a frequent phenomenon even
simple neural network models, but it has been thought o
being of no direct computational relevance. Computat
with chaotic neural networks attracted much interest after
observation that chaotic dynamics may be directly involv
in the neurocomputational activities of the brain@1#. There
are several approaches concerning computation with cha
neural networks. Such networks may allow us to realize
sociative memories with enormous storage capacity, sinc
infinite number of unstable periodic orbits~UPOs! is embed-
ded in a chaotic attractor, each of which can be stabili
using chaos control techniques@2#. Chaotic dynamics can
also be used during the network’s learning cycle to prev
the network from becoming captured in undesired lo
minima @3#. Furthermore, chaotic neural networks can lea
correlations between time series, which can be applied
prediction and modeling of sequence generation@4#. In addi-
tion, neural networks with chaotic attractors are expected
allow a more biologically realistic approach to perform co
putational tasks: such systems encode and classify stimu
altering their dynamics rather than by converging to a st
pattern.

To illustrate this, one may consider the well-known L
renz attractor. Recognition of an input pattern may stabi
the network dynamics onto individual parts of the attract
e.g., onto one of the two wings of the Lorenz attractor. Th
is ample evidence for the validity of this suggestion fro
several experimental studies as well as mathematical mo
of the olfactory bulb@5#. It is believed that in the absence o
signals from olfactory receptors, the activity of the olfacto
bulb is chaotic and of low amplitude. Signals from the r
ceptors reduce the dimension of the attractor, or even m
the chaotic activity coherent and periodic.

Coupled nonlinear oscillators allow us to investigate
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functional role of coherent activity in the brain. Synchron
generation by networks of interconnected neurons has b
the subject of many theoretical and numerical studies@6#.
Synchronization can manifest itself in different ways. T
common meaning of synchronization is the coincidence
events or motions with respect to time. As a basic pheno
enon in physics and biology, synchronization refers to
simultaneous occurrence of entrainment~1:1 frequency lock-
ing! and phase locking in weakly coupled oscillator e
sembles. Following widespread study of chaotic oscillato
the notion of synchronization has been generalized to th
systems@7,8#. Coupled identical deterministic chaotic sy
tems can synchronize perfectly: once the coupling excee
critical value, both systems move along identical orbits.
method to study synchronization in chaotic systems was p
posed by Pecora and Carroll@7#. They split a chaotic system
into two subsystems, a drive and a response system. T
find that drive and response will typically synchronize only
the maximal Lyapunov exponent of the response subsys
is negative. In general, such a situation can be studied
equations of the form

u̇~ t !5F„u~ t !,v~ t !…,
~1!

v̇~ t !5G„v~ t !….

Since the coupling is active only in one direction, such
system is referred to as a master-slave system with slavU
and masterV and with state variablesu5$u1 , . . . ,ur% and
v5$v1 , . . . ,vd%.

If the coupled systems are not identical, in general th
cannot move along identical orbits. But if they are both ch
otic and noise-free, a measurable interdependency can
exist, provided the coupling is sufficiently strong@9#. This is
referred to as generalized synchronization, which in nonid
tical chaotic systems of the form~1! can be obtained if a
relation u(t)5C„v(t)… exists. Identical synchronization re
quiresC51, whereas the condition for generalized synch
nization is less restrictive. As suggested by Pyragas@10#, C
can be either a smooth transformation, where the general
i-
©2001 The American Physical Society08-1
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synchronization is strong, or a nowhere continuous trans
mationC, where the generalized synchronization is weak
general, it is not possible to constructC explicitly, and even
if it were, it would not be clear to what extent deviation
from predicted values are due to a lack of synchronization
to an inexactness ofC. When the exact equations of motio
are known, generalized synchronization can be inferred fr
the Lyapunov exponents of Eqs.~1! or from the identical
synchronization of two identical slave systems. New m
sures of generalized synchronization suitable for experim
tal data have been proposed recently@11#.

In biology, both ways of coupling—reciprocal an
master-slave—coexist. As an example, cortex and thala
as structures are reciprocally connected; they are not, h
ever, on the cellular scale. For example, thalamic input is
into layer IV neurons, but cortico-thalamic projection orig
nates in layer VI cortical neurons. Within the cortex, pyr
midal cells and interneurons are partly reciprocally co
nected, partly not, and form functional compartments wit
the cortex. Other examples of master-slave configurations
found in the cortico-striatal projection, in the cerebellar c
cuitry, in the hippocampal-lateral-medial septum pathway
the entorhinal-nucleus accumbens pathway.

The mechanisms of inducing synchronous firing in grou
of cells are not yet accessible to experimental study, si
too many ‘‘parameters’’ are impossible or at least difficult
control by means of pharmacological techniques. When
citable systems are subject to an external stimulus, the q
tion arises under which conditions they can be entrained
pair of neurons could be synchronized either via direct s
aptic connection between them or as a result of a comm
input.

In this work, we study two coupled chaotic discrete-tim
neural oscillators based on a model proposed by Wang@12#.
The intrinsic dynamics of these oscillators and their respo
to constant external stimuli are well understood. Howev
an understanding of the dynamic properties of coupled, sm
ensembles is also essential, especially in view of larger
works. A description of the model and its basic properties
presented in Sec. II. In Secs. III and IV, we present a
merical study of the dynamics of a master-slave system
we show the dependence of the systems behavior on
parameter master-slave coupling strength and constant e
nal input on the drive system. The overall behavior of t
slave system in response to the resulting chaotic drive
analyzed by calculating bifurcation diagrams. The synch
nization properties of the master-slave system are determ
by explicitly calculating the maximal Lyapunov expone
assigned to the slave system. Section V gives a summar
the results and a general discussion of the neurocomp
tional and neurobiological properties of the model.

II. MATHEMATICAL DESCRIPTION

A. A discrete-time neural oscillator model

Most works on neural oscillators focus on continuou
time models, such as, for instance, the Wilson-Cowan mo
@13#. Discrete-time models received relatively little attentio
though their behavior often differs fundamentally from th
01110
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continuous-time counterparts. Even simple discrete-time
cillators can produce a variety of dynamical behavior ran
ing from fixed points through quasiperiodicity to chaos.
general discrete-time neural oscillator model is given by

xt115 f ~wxxx
t1wxyy

t1u1ux!,
~2!

yt115 f ~wyxx
t1wyyy

t1v1uy!,

wherex andy are the state variables of a pair of an excitato
and an inhibitory neuron, thewi j are the synaptic weights,u i
are fixed thresholds, andu andv are external inputs. A sche
matic representation of Eqs.~2! is shown in Fig. 1. The out-
put function f is given by a sigmoidal function, such a
f (z)5tanh(mz) or the Fermi function

f ~z!5
1

11e24sz
. ~3!

For the intrinsic dynamics of Eqs.~2!, two prominent types
of connection weight matricesw have been considered:

w(A)5S a 2a

b 2bD , w(B)5S a 2b

b a D .

The typeA is widely studied@12,14–16#. As shown by Wang
@12#, for u5v50, the choicea>2b produces a period-
doubling route to chaos for varying the parametersm or s. In
the chaotic regime, two chaotic attractors may coexist w
distinct attraction basins. Constant external input can sw
the dynamics from one attractor to the other@14,15#. This
allows us to perform simple computational tasks using c
otic attractors. In addition, the system~2! can encode infor-
mation in the sense of representing stimulus intens
through changes in system dynamics@14#.

The type-B connectivity results in a system with period
oscillatory dynamics@19#. For a21b2.1, a limit cycle at-
tractor occurs via a secondary Hopf bifurcation~or Neimark-
Sacker bifurcation! and may vanish by means of a sadd
node or limit-cycle bifurcation.

FIG. 1. Schema of the discrete-time oscillator (x,y) with syn-
aptic weightswi j and external inputsu andv.
8-2
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B. A neural oscillator with delay

With respect to performing computational tasks, t
model ~2! has serious shortcomings. First, the system in
ground state has two distinct attractors. Second, the effe

FIG. 2. Chaotic attractors corresponding to the~a! ‘‘ground,’’
~b! ‘‘up,’’ and ~c! ‘‘down’’ states of Eq.~4!.
01110
s
of

external input is not canceled when the input is turned o
i.e., the system does not fall back to a defined ground st
Finally, the chaotic attractors are separated by an unst
fixed point, which may interfere unfavorably with the ne
work dynamics by capturing the orbit. A modified system

xt115 f @axt2ayt1c f~dxt21!1u#,
~4!

yt115 f ~bxt2byt1v !,

was suggested to counter these defects by introducing a t
delayed feedback on the excitatory neuron@15#. This modi-
fication results in a sigmoidal-shaped chaotic attractor a
‘‘ground state.’’ In response to external input, the syste
constrains its dynamics onto delimited parts of the attrac
as long as the input is supplied. Excitatory input on neurox
confines the output of (x,y) to an attractor in the upper ha
of the phase space, whereas inhibitory input results in
attractor in the lower half of the phase space. In the follo
ing, we refer to these states as ‘‘ground,’’ ‘‘up,’’ an
‘‘down’’ states, respectively~cf. Fig. 2!.

The introduction of a time-delayed feedback seems b
logically unjustified. It is believed that chaos in biologic
networks arises from the interaction between different n
work areas separated by long and/or slowly conducting pa
of signal transmission, effectively acting as a time-delay
feedback loop. But instead of using Eq.~4! with delayed
self-coupling, a network with four neurons can be used
obtain identical dynamics. The four-neuron network can
used as a simple logical unit, capable of performing for
stance, the XOR function by discriminating excitatory a
inhibitory input @15,16#. The connection scheme for intro
ducing the delayed feedback loop into the system given
Eqs. ~2!, incorporated as an additional neuron, is shown
Fig. 3.

FIG. 3. Schema of the discrete-time oscillator with delay
feedback loop. Filled elements indicate inhibitory neurons.
8-3
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III. DYNAMICS OF A DRIVER-RESPONSE SYSTEM

A single neural oscillator effectively acts as a signal tra
ducer, turning a nonoscillating input into a chaotic sign
This may allow us to encode the intensity of a sensory in
in different degrees of complexity in behavior, ranging fro
periodic to chaotic dynamics. However, more realistic is
steady flow of incoming information interacting with ong
ing activity in distributed networks. Thus, time-depende
input is more likely to be of relevance. Interactions of tw
chaotic neural oscillators~2! or ~4!, respectively, can be stud
ied in a master-slave configuration with unidirectional co
pling. Assuming that the inhibitory neuronsyi are local cir-
cuit neurons and only the excitatory neuronsxi can interact,
this results in the equations

x1
t115 f @ax1

t 2ay1
t 1c f~dx1

t21!1«x2
t 1u1

t 1u#,
~5!

y1
t115 f ~bx1

t 2by1
t 1v1!,

x2
t115 f @ax2

t 2ay2
t 1c f~dx2

t21!1u2
t 1u#,

~6!
y2

t115 f ~bx2
t 2by2

t 1v2!.

Here (x1 ,y1) is the response system~slave! and (x2 ,y2) the
drive ~master!. The transfer function is given by the Ferm
function ~3! with steepnesss51, so thatf (z)P@0,1#. The
synaptic connection weight matrices for both oscillators
of type A and are identical:

w5S 25 225

5 25 D . ~7!

Throughout the text, we use the parameter valuesc521.5
and d50.5. The threshold, or bias,u was chosen identica
for both excitatory neurons asu50.5. Via the bias, it is
possible to control the system’s overall activity level, whi
may be helpful in adjusting the network parameters so a
comply with the desired stabilization properties. The value
u50.5 has been found suitable to keep the system in a
otic state. The coupling strength between master and sla
given by «. For «50, the systems are decoupled and ea
system is chaotic depending on the external inputs, which
denoted byu1 andu2. Effectively, constant external inputu1
and the chaotic drive signal add up to a time-dependent in
on the response system.

It is assumed that stimulus reception in biological s
tems, at onset and offset of input activity, respectively, s
bilizes the system transiently onto a new attractor. One m
also consider memory formation and retrieval as attrac
stabilization ~through neuromodulatory substances that
hance those couplings related to the attractor!. Also, pattern
recognition may be realized as a matching operation:
stored attractor is, loosely speaking, congruent with
present attractor induced by sensory input. Thus, of part
lar interest for our study is the behavior when drive a
response system are in different initial attractor states
external input is applied. There are 18 different state confi
rations for the master-slave pair if«Þ0, determined by the
sign of the coupling coefficient« and the states of both os
01110
-
.
t

a

t

-

e

to
f
a-
is

h
re

ut

-
-
y
r
-

e
e
u-

d
-

cillators. In the following, we study in detail the situatio
when drive and response are in the ‘‘ground’’ state and
drive is settled into the ‘‘up’’ state by constant external i
put.

A. Dynamics with uiÄ0

Without external influences, i.e., withui50 and«50, the
‘‘ground’’ state corresponds to the unperturbed state for b
oscillators. Here, (xi ,yi) oscillates irregularly in the uppe

FIG. 4. Signal of neuronx1 in the ‘‘ground,’’ ‘‘up,’’ and
‘‘down’’ states and in the intermittent regime while adapting t
‘‘up’’ state.
8-4
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and lower halves of the phase space forming an S-sha
attractor. The effects of increasing the coupling strength«
can be observed in the output signal of neuronx1 ~cf. Fig. 4!,
in the bifurcation diagrams in Figs. 5 and 6 where the stat
the excitatory response neuronx1 is plotted as a function o
«, and in the phase portrait of the response oscillator~cf. Fig.
7!.

When both drive and response are in the ‘‘ground’’ sta
the chaotic driving results in an enlargement of the attrac
and a chaotic response over a large range of coup
strength«. Applying weak constant external input to th
drive system allows us to switch the drive from th
‘‘ground’’ state into the ‘‘up’’ or ‘‘down’’ state, respec-
tively. We note that external input does not constrain to
part of the ground-state attractor in a strict mathemat
sense, but we found that this new, nearby attractor app
sufficiently close~in the sense of the Hausdorff distance! to
the old one.

B. Dynamics with uiÅ0

Turning on the external inputu2, we can observe that th
response system adapts to the attractor of the drive syste
the coupling strength exceeds a critical value and the c
pling coefficient and the input have equal signs. For«.0
and a negative inputu2 to the drive, the ‘‘down’’ state for
the drive, the response does not adapt to the attractor o
driving system. In contrast, a negative sign for the coupl
strength« and positive input on the drive results in an ada
tation of the response to the complementary attractor,
‘‘down’’ state.

FIG. 5. Bifurcation diagrams of the output of neuronx1 ~a! with
external inputu251 onx2 as a function of coupling strength«. ~b!
With coupling strength«51 as a function of external inputu2.
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Thus, the response system is sensitive to the spatial l
tion of the drive in phase space. The dynamics of the
sponse restricted to the new spatial location can be ei
chaotic or periodic, depending on the drive strength and
dependent of the nature of the drive signal. Close to
critical coupling for synchronization, we can observe r
gimes with partial synchronization: the dynamics of the
sponse follows the drive for short periods interrupted in
regular intervals by sudden jumps to the complement
attractor, resulting in a complex burstinglike behavior.

To estimate the parameter regions, bifurcation diagra
were evaluated using« andu2 as bifurcation parameters. T
this end, one of the parameters« andu2 was kept at«51 or
u251, respectively, while the other parameter was varied
general, chaotic behavior of the system~4! in response to
constant external input is observed in a small param
range betweenu2'0.3 andu2'0.6. For larger values o
input strength, we note that the single oscillator typically
not chaotic but oscillates periodically. Thus, we expect t
chaotic behavior of the response in the ‘‘up’’ state can
found in a corresponding parameter regime for«. First we
fixed « and obtained the output of neuronx1 as a function of
external inputu2 on neuronx2. We start a detailed analysi
with «50.3. For this coupling strength, the response syst
switches to the ‘‘up’’ state if the external input strength e
ceedsu250.89. A periodic window can be observed fo
1.064,u2,1.243. For larger values, the output of neuronx1
is again in the chaotic ‘‘up’’ state. For«50.4, the response
system jumps to the ‘‘up’’ state ifu2.0.39 and remains
chaotic also for larger values of input strengthu2. Further

FIG. 6. Bifurcation diagram of the output of neuronx1 as a
function of coupling strength« for external input strength~a! u2

50.35 and~b! u250.45.
8-5
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FIG. 7. Attractor of response
~left! and drive~right! for «50.5
and applied external inputu2

50.3 ~top! and u250.37 ~bot-
tom!.
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increasing« again yields a critical value ofu2'0.39 for
adjusting to the ‘‘up’’ state, while chaotic behavior is no
observed in a smaller region ofu2.

For fixed external inputu2 and varied coupling strength«,
the bifurcation diagrams show qualitatively similar behavi
For u250.35, periodic windows can be observed for«
'0.2 and«'0.4. The intermittent regime then follows, an
at «'0.48 the response is completely settled into the ‘‘u
state. This chaotic regime is interrupted by a small perio
window at«'0.51. At«'0.538, the chaotic attractor disap
pears via a reverse sequence of period doublings. A«
'0.6 andu250.35, a new chaotic attractor appears in t
‘‘up’’ state region via a crisis as can be seen in Fig. 6~a!.

Increasing external input strengthu2 yields similar behav-
ior, but shifts the parameter regions towards larger valu
The behavior foru250.45 is shown in Fig. 6~b!.

IV. GENERALIZED SYNCHRONIZATION

For coupled chaotic systems, intuition about criteria a
conditions of synchronization may fail. Previous stud
showed that there is no sharp synchronization threshold
stead, there are multiple thresholds, each associated wit
unstable periodic orbit. Near each synchronization thresh
there can be intermittent bursting~attractor bubbling! of the
system out of the synchronous state when there is a s
amount of noise or parameter mismatch present@17#. The
01110
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attractor may exhibit riddled basins, so that a prediction
the synchronized state is almost impossible by just know
initial conditions@18#.

Synchronization of chaotic systems and the stability of
synchronized state can be determined by the spectrum o
Lyapunov exponents. One obtains synchronization only
the maximal Lyapunov exponent of the response subsys
is negative. For the system in Eqs.~1! one has d1r
Lyapunov exponents. Of these,d exponents coincide with
those of the drive and are denoted byl i

(V) , i 51, . . . ,d. The
other r exponentsl i

(U) , i 51, . . . ,r , are assigned to the re
sponse and are called conditional Lyapunov expone
Ranking the Lyapunov exponents by magnitude (l1.l2.
•••), one obtains generalized synchronization ifl1

(U),0.
The attractor dimension of the combined systemU1V can
be estimated with the Kaplan-Yorke formula

DU1V5 l 1(
j 51

l
l j

ul l 11u
, ~8!

where l is defined by the conditions( j 51
l l j.0 and

( j 51
l 11l j,0. To obtain the Lyapunov exponents, we need

linearized equations. Therefore, we rewrite the time-dela
system~4! as an equivalent three-dimensional system,

xi
t115 f ~axi

t2ayi
t1czi

t1ui !,
8-6
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MASTER-SLAVE SYNCHRONIZATION IN CHAOTIC . . . PHYSICAL REVIEW E64 011108
yi
t115 f ~bxi

t2byi
t1v i !,

~9!
zi

t115 f ~dxi
t!,

to construct the master-slave system in analogy to Eqs.~5!
and ~6!. For this system, the Jacobian matrix can be ea
determined. The spectrum of the Lyapunov exponents for
single system~9! was calculated asl1'0.502, l2'22.43,
and l3'28.17 for the ‘‘ground’’ state (ui50) and l1
'0.427, l2'24.334, andl3'27.145 for the ‘‘up’’ state
with constant external inputui50.3. In Fig. 8, we show the
maximal conditional Lyapunov exponent of the master-sla
system as a function of the coupling strength« and different
input parametersu2. The qualitative dependence on the co
pling strength« reproduces the behavior of the oscillator
observed in the bifurcation diagrams in Fig. 6. The dime
sion for the joint system was calculated asDU1V52.03 for
u250.35 at«50 and asD51.3474 at«50.49, where the
response adapts to the ‘‘up’’ state.

In the parameter regimes where the response adapts t
state of the drive, the maximal Lyapunov exponent decrea

FIG. 8. Maximal Lyapunov exponent for the joint drive
response system with fixed external input~a! u250.35 and~b! u2

50.45 as a function of master-slave coupling strength«.
01110
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but remains positive. For a larger coupling strength«, the
maximal conditional Lyapunov exponent becomes negat
indicating generalized synchronization. For parameter val
where the new chaotic attractor appears at«'0.6, the
Lyapunov exponent becomes positive again. An inspec
of the regions of a negative maximal Lyapunov expon
shows different behavior depending on the dynamics of
drive system. For a periodic drive, the response may a
become periodic. For values ofu2 yielding a chaotic drive
signal, we can observe chaotic dynamics of the response
much smaller scale, in the form of small-amplitude fluctu
tions ~presumably due to the response operating near
saturation of the Fermi output function!. It seems that the
dynamical behavior of the response system is comple
determined by the drive. To investigate this in more det
we consider two identical reponse systems, differing only
their initial amplitudes, and driven by a common drive sy
tem. In the parameter regime where the original chao
attractor disappears via a sequence of reverse pe
doublings, we can observe a time shift or a delayed synch
nization between both response systems. Near the bifurca
points, the delay can be decreased. This behavior se
plausible since in this parameter regime the chaotic dyn
ics of the response can only be observed as small-ampli
fluctuations. Between bifurcation points, the perturbations
the chaotic drive are not sufficient to synchronize the ‘‘pe
odic’’ orbits of the response systems.

The most interesting behavior is found in parameter
gimes where the maximal conditional Lyapunov expon
crossesl1

(U)50, or remains close to zero. In Fig. 8, we ca
observe that the periodic windows in Fig. 6 coincide with t
main minima of the maximal Lyapunov exponent. For e
ample, for external inputu250.35 there is a region 0.35
,«,0.64 of the master-slave coupling where the Lyapun
exponent changes its sign several times. At«50.35 and«
50.37, the response system is oscillating periodically in
‘‘up’’ state or the ‘‘ground’’ state, respectively. For 0.4
,«,0.54, the response system is in the chaotic ‘‘up’’ sta
At «50.36, «50.43, and«50.45, the response is in th
intermittent regime where the synchronization is interrup
by sudden excursions off the ‘‘up’’ state.

V. DISCUSSION

Chaotic systems are characterized by their sensitive
pendence on initial conditions. Small perturbations of t
chaotic system can cause large and swift responses.
greatly improves the flexibility of a system to be used
various applications. Coupled chaotic maps have been
posed as a basis of high-tech sensors or secure commu
tion devices@20#. In addition, it was shown that weakly con
nected mappings with chaotic dynamics have neu
computational properties@21#.

A single system~9! is capable of spatiotemporal informa
tion processing. External, chaotic input from an identic
system induces a variety of dynamic behaviors in respons
the chaotic drive. Possibly the response system adjust
state to the state of the driving oscillator. Our results sh
that the response system is more sensitive to the spatia
8-7
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cation~corresponding to the ‘‘up’’ or ‘‘down’’ states, respec
tively! of an external driving than to the nature of the inp
~constant, periodic, or chaotic!. Thus the master-slave syste
~9! may provide an example of a chaotic system that
generate spatiotemporal correlations by adapting to a sta
the drive, accompanied by either synchronization or tem
rally uncorrelated activity. The state of the response i
function of the drive, depending on the restrictions impos
by the strength of the master-slave coupling and the stre
of external input to the drive. Varying external inputu2 may
yield chaotic as well as periodic activity of the drive. If th
master-slave coupling exceeds a critical value, the respo
follows the drive, independent of the nature of the drivi
signal. The Lyapunov exponents shown in Fig. 8 confirm
conclusions drawn from the bifurcation diagrams in Figs
and 6. If both systems are set into the chaotic ‘‘up’’ state,
maximal Lyapunov exponent corresponding to the respo
system first remains positive for intermediate coupli
strength and then for larger coupling strength a nega
maximal Lyapunov exponent is observed, i.e., generali
synchronization.

In the parameter regime where the response system ad
to the state of the drive, we can also observe intermitt
behavior or partial synchronization. The dynamics of the
sponse follows the drive for longer periods. This is inte
rupted by sudden jumps to the complementary attractor
results in complex burstinglike behavior. Such behavior
been found in several coupled chaotic systems and is refe
to as on-off intermittency@17#. This kind of intermittency is
characterized by short periods of desynchronization in
rupting the synchronized activity. The origin of these sh
events of desynchronization is unstable periodic orb
~UPOs! of the drive attractor that fail to entrain the corr
sponding fixed point or periodic orbit of the response syste
When driven with one of these UPOs, the response sys
does not synchronize, but oscillates in a way different fr
the drive. In the joint space of drive and response, th
UPOs are transversally unstable, i.e., in their vicinity t
synchronization manifold is repelling, not attracting. Whe
ever an almost synchronized trajectory comes close t
transversally unstable UPO, it is repelled from the synch
nization manifold and synchronization breaks down for
short period of time.

There is ample experimental evidence for chaotic beh
ior in single neurons and on the network level. The biolo
cal relevance of the model~2! with type A connectivity is
discussed in detail elsewhere@14#. Of course our model~4! is
also a simplified analogy of a real biological system. Thus
has several limitations and there is no guarantee that
behavior of the model is actually relevant for biological sy
tems. However, studies of complex oscillator ensemb
must proceed from simplified and therefore somewhat un
alistic models. We are only beginning to understand
brain as an ensemble of neuronal oscillators instead o
network of simple inhibitory and excitatory integrate-an
fire elements. There is good experimental evidence that
precise temporal pattern of neuronal activity is crucial
information processing and that studies of coupled nonlin
oscillators will lead the way to understand information pr
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cessing in the brain. One firm argument in favor of such
approach is the coexistence of reciprocal as well as mas
slave coupling in the nervous system along with the find
that these connections serve functions, e.g., in stimulus
ognition, which cannot be explained by ascribing to the
just feedback-control such as in a flow-limiting control d
vice. Nevertheless, there are numerous instances of ma
slave systems in biology that inspired the investigations p
sented here.

Networks of coupled units showing regular, periodic d
namics are widely studied in the neurobiological conte
only a few studies on synchronization phenomena focus
the behavior of coupled chaotic subsystems@22#. Coupled
chaotic systems provide the advantage, like real biolog
networks, that synchronization is sensitive to changes in c
pling strength. This may enable that transitions from sy
chronization to desynchronization and vice versa can
modulated by changes in synaptic coupling strength. In
system, see Fig. 9, we can observe that, when a pulsed i
u2 is applied on the drive, the adaptation of the respo
system to the state of the drive occurs instantaneously
contrast, the rate of convergence to the attractors, under
propriate values of coupling strength, is very slow for reg
lar, periodic oscillators.

Of particular interest are also the relations between d
crete and continuous systems. Discrete-time systems
arise in iterations of Poincare´ or time-T maps of continuous
flows. When such a mapping has a fixed point, the co
sponding flow has a limit cycle solution. When, for examp
the mapping undergoes a saddle-node bifurcation, then t
is also a bifurcation in the flow: a stable and an unstable li

FIG. 9. Signal of the responsex1 and the drivex2 for a
‘‘pulsed’’ input u2 on the drive starting att5100 for Dt5100
iterations.
8-8
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cycle coalesce and disappear. Weakly connected mapp
near fixed points or limit cycles have been studied by H
pensteadt and Izhikevich@23#. They found an intimate rela
tionship between canonical models for mappings and flo
Thus, we expect to observe similar properties in the discr
time oscillator of type-B connectivity as found in the net
works of continuous-time bistable oscillators studied in@24#.
This, however, will be the subject of further studies.
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@15# A. Klotz and K. Bräuer, Neural Networks12, 601 ~1999!.
@16# J. Schwarz, A. Klotz, K. Bra¨uer, A. Stevens, and M. Bartels, i

Proceedings of the 2nd ICSC Symposium Neural Computat,
edited by H. Bothe and R. Rojas~ICSC Academic Press, Mil-
let, Canada, 2000!, pp. 392–398.

@17# P. Ashwin, J. Buescu, and I. Stewart, Phys. Lett. A193, 126
~1994!.

@18# J.C. Alexander, J.A. Yorke, Z. You, and I. Kan, Int. J. Bifu
cation Chaos Appl. Sci. Eng.2, 795 ~1992!; J.F. Heagy, T.L.
Carroll, and L. Pecora, Phys. Rev. Lett.73, 3528~1994!.

@19# A. Tonnelier, S. Meigner, H. Bosch, and J. Demongeot, Neu
Networks12, 1213~1999!.

@20# C. Zhou and C.-H. Lai, Phys. Rev. E59, 4007~1999!.
@21# K. Kaneko, Physica D77, 456 ~1994!; A.S. Pitkovski and J.

Kurths, ibid. 76, 411 ~1994!.
@22# F. Pasemann and T. Wennekers, Network Comput. Ne

Syst.11, 41 ~2000!.
@23# F.C. Hoppensteadt and E.M. Izhikevich,Weakly Connected

Neural Networks~Springer, Berlin, 1997!.
@24# J. Schwarz, A. Sieck, G. Dangelmayr, and A. Stevens, B

Cybern.82, 231 ~2000!; J. Schwarz, K. Bra¨uer, G. Dangel-
mayr, and A. Stevens, J. Phys. A33, 3555~2000!.
8-9


